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Abstract-A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum 
equation of power-law non-Newtonian fluid is presented. The analysis makes use of the MerkkChao 
series solution method originally devised for the flow of Newtonian fluid. The universal functions for the 
leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions 
associated with the second and the third terms are provided. The solution together with either Lighthill’s 
formula or Chao’s formula constitutes a simple yet general procedure for the calculation of wall shear 
and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and 

the results compared with published data. 

NOMENCLATURE 

f> dimensionless stream function, equation 

(8); 
fo, ,fl, ,fi, Universal functions, equation (15) ; 

parameters in the power-law model, 
equation (3); 
characteristic length; 
radius of a circular cylinder or a sphere; 
Reynolds number, = pL”LJ~~“/K ; 
distance from a point on the surface to the 
axis of symmetry, r = L for two- 
dimensional problems ; 
velocity component outside the boundary 

layer; 
characteristic velocity ; 
velocity component in x-direction; 
velocity component in y-direction; 
distance along the surface from the 
stagnation point or the leading edge; 
distance normal to x. 

Greek symbols 

89 wedge variable, equation (12) ; 

PJ density; 

$2 stream function, equation (6); 

s> transformed x-coordinate, equation (7a); 

II, transformed y-coordinate, equation (7b); 

rxyr shear stress ; 
z WI) wall shear stress. 

1. INTRODUCTION 

THE NEED for studying boundary layer transfer of 
non-Newtonian fluid was realized about two decades 

*Now at NASA Kennedy Space Center, Mail Code DD- 
MED-42, FL 32899, U.S.A. 

ago. This was probably caused by the growing use of 
non-Newtonian fluids such as molten plastics, poly- 
mers, foods, etc., in various manufacturing and 

processing industries. In most technological appli- 
cations, it is often the wall shear and the surface heat 

transfer rate that are of the greatest interest. Since 
the validity of boundary layer energy equation is not 
restricted to any particular class of fluid, the heat 
transfer formula of Lighthill [l] or of Chao [2] can 
also be used for flow of non-Newtonian fluid. 
Because of large Prandtl number for most non- 
Newtonian fluids, the Lighthill formula is generally 
accurate enough for most engineering applications. 

However, the Chaos formula can be used if more 
accurate results are desired. Since both formulas 
require that the wall shear be known, the need for a 
simple yet general procedure for calculating the wall 
shear is obviously called for in the heat transfer 
calculation. 

To provide such a procedure, the 
Karman-Pohlhausen integral method originally de- 
vised for Newtonian fluid was used by Acrivos et al. 
[3] and by Bizzell and Slattery [4]. Acrivos et al. 
found that the method is substantially less accurate 
for power-law fluids than for Newtonian substances 
under otherwise same flow conditions. For this 
reason, they presented [5] another approximate 
solution by an asymptotic technique. Their solution, 
in essence, is an interpolation between two limiting 
solutions. This solution is simple to use, yet it is not 
clear how the calculations are to be improved if 
more accurate results are desired. The Blasius series 
method for analyzing the boundary layer equation of 
Newtonian fluid was extended to the power-law 
fluids by Wolf and Szewczyk [6]. They pointed out 
that very little can be expected from the series for n 
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greater than about 1.2 for the entire region of 
laminar flow. The Goertler series method for solving 
the boundary layer momentum equation was ex- 
tended to power-law non-Newtonian fluid by Serth 
and Kiser [7]. With the universal functions they 

provided, the analysis appears to be of limited use- 
fulness for pseudo-plastic fluids (n < 1). 

A rapid computational procedure which makes 
use of universal function for calculating boundary 
layer transfer in flow of Newtonian fluid was first 
proposed by Merk [8] and later corrected by Chao 
and Fagbenle [9]. This series solution method is able 
to provide accurate results for flows of Newtonian 
fluids even if only the first term of the series is used 
[lo, 111. The first term of the series represents the 
local similarity solution. The remaining provides a 
rigorous correction for the departure from local 
similarity. In this paper we shall extend the 
Merk-Chao method to the solution of the laminar 
boundary-layer momentum equation of non- 
Newtonian fluid. The flow is assumed to be steady 

and incompressible. 

2. ANALYSIS 

the momentum equation (2) becomes: 

d'f 
a'13+ 

= s a’.r 1-n af azf af a21 (-! [ n aq2 1. av acarl ag a+ 
(9) 

The associated boundary conditions are: 

f(<,O) = 0, 'r- (l&O) = 0 
?q (lOa,b) 

5 (5, co) = 1. (11) 

Here R, = pL”Ui-“/K is the generalized Reynolds 
number and 

_dU 

is the so-called “wedge variable”. The x-component 
of velocity and the wall shear are, respectively, given 

by 

For a steady, incompressible, laminar flow past a U&Z 
smooth axisymmetric object, the boundary-layer al?’ 

(13) 

equations are [ 121 and 
a(w) d(ru) 
Sx+-=O 

3)) 
(1) KUn, 

7 z--- w 
R”“” + 1) 

L” e 

(2) 

For flow past a two-dimensional body, one needs 

only to set r = L, L being a reference length. For the 
According to Merk and Chao, the appropriate 

so-called power-law fluids, one has: series solutions for equation (9) satisfying equations 
(lOa,b) and (11) is: 

(3) 
f(Lrl)= fo(PJ)+5gfm 

in which K and n are material constants of the fluid 
and are both positive. The appropriate boundary 
conditions are: 

+5'$ f2(P,v)+... (15) 

u(x, 0) = u(.x, 0) = 0 (%b) 

u(x, cc) = U(u). (5) 

Upon introducing a stream function $(x, y) de- 
fined by 

ru = !!!!! a+ 
ay ’ r”= -?I’ 

the continuity equation (1) is then identically 
satisfied. By considering the transformation 

Upon substituting equation (15) into equation (9), 
followed by first collecting terms free of derivatives 
of /I and then terms common to ((d/I/d<), 
~2(d2~/d~2), etc., one obtains a sequence of differen- 
tial equations. The first equation is, with prime 
denoting differentiation with respect to PJ, 

f;” + & fo(f6’)2-” 

with 

+;[I-(fd)‘](fi’)‘-“=O, (16) 

h(B>O) = _G(P,O) = 0 (170) 

f6(P, a) = 1. (18) 
and introducing a dimensionless stream function 
f([, q) such that It should be noted that p is a function of x only. At a 

+(x, y)= L2U,Rc1’(“+1)~‘i(“+1)f(~, q), 
given streamwise location, it is fixed. Hence, equa- 

(8) tion (16) can be integrated as if it were an ordinary 
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differential equation. The j,, function is universal in 
the sense that for a given a and n, it may be 

(20) 

.W, 0) = A’CD. 0) = A’(B, 00) = 0, f2hb.c) 

where i = 1 or 2, Like &,X’s are also universal. The 

derivative a”f /au* evaluated at the wall is: 

It is fitting to point out that when /3 is a constant, 
the flow is similar and the series expansion (15) has 
only the first term. The expression for wall shear now 
becomes : 

t KU”, 28 

w 
= _R”/(“+l) 

L” e 
x t-“‘(“+“[f;‘(/$ O)]“. (23) 

When the flow is nonsimiIar, the first term,f,, in (15) 
constitutes the local similarity solution. The remain- 
ing terms, taken collectively, may be regarded as 
corrections for the deviation from local similarity. 
Hence equation (23) also represents the local similar 
solution of a nonsimilar problem. We reiterate that if 
one sets r = L, all equations presented in this paper 
are then applicable to two-dimensional flows. 

Once the wall shear function is calculated, the 
formula for surface heat transfer rate calculation is 
readily available. The readers are referred to 

III, 2,131. 

3. APPLICATIONS 

We now consider a fIow of power-law fluid past a 

wedge for which U(x) is proportional to Y’. It can 
then be demonstrated that: 

p = 2m/[m(2n - 1)+ I], a constant (24a) 

Wb) 

and 

Since /I is a constant, the flow is similar. This agrees 
with the work of Hsu and Cothern [14]. Comparing 
equation (241~) with equation (12) in [14], one has: 

r 9 li/tn+l) 

vfi’(& 0) = l&j . [,L,,,~~)]H-c, (25) 

where Lfi,,,CO)] H-C d enotes the wall derivative ,6,,,(O) 
in [14]. 

By Meksyn’s method, Hsu and Cothern [14] have 

calculated values of [&,(O)]n_c for wedge angle 
from 0 to n and n from 0.2 to 2. Using their values of 

[&(O)]n-c and equation (25), the value of universal 
function, .&‘(p, 0), can be obtained. They are tabu- 
lated in Tables 1 and 2. With these, the wall shear 
can be calculated from (23). 

We next consider flow across a long horizontal 

circular cylinder. According to Shah et al. [15], the 
velocity profile for x/R < 1.05 and for 0.6 < n < 1 is: 

; = 0.92; -0,131 3. (26) 
3c 

Using this expression, Serth and Kiser [7] have 
reported numerical data of the dimensionless wall 
velocity gradient for several values of n. To effect a 

direct comparison, we shall also use equation (26) 
and assume that it is valid for all 11 and for the entire 
flow region. With the velocity profile specified, < and 
@ can be evaluated from (7a) and (12). With the aid 
of Table 1 or 2, the dimensionless wall velocity 
gradient can then be calculated from equation (23). 
The results are, along with the data reported in [7], 
displayed in Fig. 1. It is seen that they compared 
quite well except for II = 0.2. This may be due to the 
fact that Serth and Kiser [7] had difficulty in 
obtaining sufhcient universal fLInctions for values of 
n < OS. Also shown in Fig. I are the results for n 
= 0.4 and 1.6 calcmated from the 2-term Blasius 
series in [6] and with the velocity profile represented 
by equation (26). Good agreement is seen for x/R up 
to about 1. Since the third term in the Blasius series 
is positive for I? > 1 and negative for ia < 1, better 
agreement is expected if the results from 3-term 
Blasius series were compared. It is interesting to 
point out that, unlike the case of Newtonian fluids, 
the first term of the Blasius series is monotonically 
increasing with x. 
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Table 1. Value of f;‘(/?, 0) for pseudoplastic fluids 

n = 0.200 ,I = 0.300 n = 0.400 II = 0.500 

B .f6’(lr, 0) /I KM 0) B .I;;‘(/% 0) B .id’(A 0) 

0.000 0.895 0.000 0.675 0.000 0.578 0.000 0.529 
0.109 1.457 0.108 I.034 0.106 0.842 0.105 0.738 
0.238 1.844 0.233 1.280 0.227 1.030 0.222 0.894 
0.395 2.236 0.380 1.663 0.366 1.234 0.353 1.058 
0.588 2.762 0.556 1.892 0.526 1.502 0.500 1.261 
0.833 3.418 0.769 2.258 0.714 1.733 0.667 1.436 
I.154 4.132 1.034 2.669 0.937 2.001 0.857 1.631 
1.591 5.127 1.373 3.179 1.207 2.316 1.077 I.846 
2.222 6.561 1.818 3.837 1.538 2.689 1.333 2.094 
3.214 8.767 2.432 4.716 1.957 3.143 I.636 2.356 
5.000 12.607 3.333 5.947 2.500 3.704 2.000 2.667 

n = 0.600 n = 0.700 n = 0.800 II = 0.900 

0.000 0.500 0.000 0.485 0.000 0.475 0.000 0.471 
0.104 0.676 0.103 0.638 0.102 0.613 0.101 0.595 
0.217 0.813 0.213 0.761 0.208 0.727 0.204 0.703 
0.341 0.951 0.330 0.882 0.319 0.834 0.309 0.801 
0.476 I.112 0.455 1.012 0.435 0.943 0.417 0.889 
0.625 1.253 0.588 1.128 0.556 1.051 0.526 0.976 
0.789 1.400 0.732 1.246 0.682 1.138 0.638 1.058 
0.972 1.557 0.886 1.365 0.814 1.233 0.753 1.133 
1.176 1.734 1.053 1.490 0.952 1.327 0.870 1.212 
1.406 1.903 1.233 1.616 1.098 1.423 0.989 1.287 
1.667 2.085 1.429 1.749 1.250 1.518 1.111 1.357 

Table 2. Value of&‘([I, 0) for dilatant fluids 

II = 1.000 n = 1.200 ,1 = 1.400 n = 1.600 

B B - 
0.000 0.469 0.000 0.472 0.000 0.476 0.000 

0.100 0.588 0.098 0.580 0.096 0.574 0.094 

0.200 0.687 0.192 0.669 0.185 0.654 0.179 

0.300 0.775 0.283 0.742 0.268 0.704 0.254 

0.400 0.856 0.370 0.807 0.345 0.754 0.323 

0.500 0.930 0.455 0.864 0.417 0.819 0.385 

0.600 0.997 0.536 0.916 0.484 0.864 0.441 

0.700 1.063 0.614 0.963 0.547 0.898 0.493 

0.800 I.124 0.690 1.006 0.606 0.93 I 0.541 

0.900 1.184 0.763 1.047 0.662 0.96 1 0.584 

1 a00 1.233 0.833 1.079 0.714 0.987 0.625 

B .&‘(A 0) Ir f;‘(B> 0) 

0.488 
0.587 
0.659 
0.714 
0.756 
0.795 
0.828 
0.857 
0.881 
0.905 
0.925 

n = 1.800 n = 2.000 

B .G’(P, 0) P ,f6’(B. 0) 

0.000 0.490 0.000 0.498 
0.093 0.592 0.09 1 0.605 
0.172 0.658 0.167 0.652 
0.242 0.707 0.23 I 0.700 
0.303 0.744 0.286 0.736 
0.357 0.777 0.333 0.765 
0.405 0.805 0.375 0.789 
0.449 0.828 0.412 0.808 
0.488 0.848 0.444 0.823 
0.523 0.866 0.474 0.838 
0.556 0.882 0.500 0.851 

We finally present the wall shear function for flow 
past a sphere for which 

r/R = sin(x/R). (27) 

If we assume that the external velocity distribution is 
independent of the degree of deviation of the fluid 
from Newtonian behavior, we have, according to 
potential theory, 

u 
- = isin(x/R). 
u, 

(28) 

Thus, the wall shear can be calculated from equation 
(23). They are displayed in Fig. 2 and are self- 
explanatory. 
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4. CONCLUDING REMARKS 5. 

The Merk-Chao series solution method has been 
extended to the solution of boundary-layer momen- 
tum equation of power-law non-Newtonian fluid. 
Equation (23) together with Tables I and 2 provide a 
simple yet general routine procedure for determining 
the wall shear over two-dimensional and axisym- 
metric bodies of arbitrary contour. With the wall 
shear function calculated, the local surface heat 
transfer rate can be evaluated from [I] or [2]. In 
addition, the thermal response behavior of boundary 
layer flow of the power-law fluid can also be 

investigated [ 161. 

6. 

7. 

8. 
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ECOULEMENT AVEC COUCHE LIMITE LAMINAIRE D’UN FLUIDE NON-NEWTONIEN 

RtisumLOn prtsente une solution de I’tquation de la couche limite laminaire bidimensionnelle et 
axisymttrique pour un lluide non-newtonien i loi puissance. L’analyse utilise la methode de Merk-Chao 
imaginte pour les fluides newtoniens. Les fonctions universelles pour le terme principal de la strie sont 
tabultes pour II compris entre 0.2 et 2. On donne les tquations reliant les fonctions universelles aux 
second et troisiime termes. La solution avec soit la formule de Lighthill soit la formule de Chao, constitue 
une proctdure simple et gtntrale pour le calcul de la tension et du flux thermique parittaux. La thkorie 
est appliqute aux t-coulements autour du cylindre circulaire et de la sphtre et les rtsultats sont compares 

aux donnies publikes. 

LAMINARE GRENZSCHICHTSTROMUNG EINER NIGHT-NEWTONSCHEN FLiiSSIGKElT 

Zusammenfassung - Eine Liisung fiir die zweidimensionale und axialsymmetrische laminare 
Grenzschicht-lmpulsgleichung einer dem Potenzgesetz gehorchenden nicht-newtonschen Fliissigkeit wird 
beschrieben. Bei der Analyse werden die Merk-Chao-Reihen verwendet, die urspriinglich fiir die 
Stramung einer newtonschen Fliissigkeit abgeleitet wurden. Die allgemeinen Funktionen fiir das erste 
Glied der Reihen werden fiir n von 0,2 bis 2 tabellarisch angegeben. Gleichungen, die die allgemeinen 
Funktionen fiir das zweite und dritte Glied bestimmen, werden angegeben. Die Liisung, entweder mit der 
Formel von Lighthill oder der von Chao zusammen, bildet eine einfache, aber allgemeine Methode fir die 
Berechnung der Wandschubspannung und des Wiirmeiibergangs an der Oberfltiche. Die Theorie wurde 
fiir die StrGmung urn einen Kreiszylinder und eine Kugel angewendet und die Ergebnisse mit bekannten 

Daten verglichen. 
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TEYEHME HEHbfOTOHOBCKOf# XMAKOCTH B JIAMMHAPHOM 
I-lOl-PAHMYHOM CJlOE 

AIIIIOT~~WI - nPeLlCTaBneH0 PeLUeHHe y&WlHeHHR KOnHYeCTBa aBHXCeHWR NISI ,WyXMepHOrO H OCe- 

CHMMeTPWIHOrO flaMHHilpHOr0 nOr~HH’,HOrO CJlOIl HeHblOTOHOBCKO~ lHLWOCTH CTeneHHOrO TWna. 

I’iCIlOnb3yeTCSl MeTOn p&l3JlOXCeHWi B pW.W Mepra %O, II&WUlO~eHHbI~ nepElOHa’WlbH0 .IlnSl aHanHia’ 

TeveHHs Hbmrotiotmoti XWIK~~TH. ilpencrasnetia Tadnsua yHHBepcanbHbIx +YHKUHW 8 nHana30He 

0,2s n 5 2 n.ns nepeoro weHa pa3nonerim. IlptieeneHbi ypaeHewn, onpeaennm~we ytimepcanb- 

me @y~I~usfti, cB553affwde co BT~~M H TpeTbHM vneHaMh+ pa3noxeHm. llpennoxeriiioe pewewe 

BMeCTe C ~OpMyJlOii .ffaiiTXHnna WIR i$IOpMynOk YaO n~IICTaBnKe+ co606 IlpOCTOfi H JlOCTaTOQHO 

0611m”i MeTOn fYdC’leTa Hanp~~efln~ TpEHH% Ha CTeHKe W ~HTeHC~BHOCT~ TenflOO6MeHa Ha 06-EKa- 

eMOii S’lOBepXHOCTB. MeTon ilj3OBePeH Ha IlpHMe~ 06TeKaHW KpyrJlOrO KliiJlHH@X3 H C&?pbl. fipO- 

BeAeHO CpaBHeHKe nOnyYeH%bIX w3yJlbTaTOB C Ony6nUKOBaHH~MU ,IlaHHblMH. 


