Int. J. Heat Mass Transfer. Vol. 22, pp. 1323-1329
Pergamon Press L1d. 1979.  Printed in Great Britain

0017-9310/79/1001-1323 $02.00/0

LAMINAR BOUNDARY-LAYER FLOW
OF NON-NEWTONIAN FLUID

F. N. Lin*
NASA Johnson Space Center, Houston, Texas, U.S.A.

and

S.Y. CHERN
Fluid Systems, Planning Research Corporation, Kennedy Space Center, Florida, U.S.A.

(Received 30 October 1978 and in revised form 8 February 1979)

Abstract— A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum
equation of power-law non-Newtonian fluid is presented. The analysis makes use of the Merk—Chao
series solution method originally devised for the flow of Newtonian fluid. The universal functions for the
leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions
associated with the second and the third terms are provided. The solution together with either Lighthill’s
formula or Chao’s formula constitutes a simple yet general procedure for the calculation of wall shear
and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and
the results compared with published data.

NOMENCLATURE
£ dimensionless stream function, equation

8);

Jo» f1, 2, Universal functions, equation (15);

K,n, parameters in the power-law model,
equation (3);

L, characteristic length;

R, radius of a circular cylinder or a sphere;

R,,  Reynolds number, = pL"U2 " "/K;

r, distance from a point on the surface to the
axis of symmetry, r = L for two-
dimensional problems;

U, velocity component outside the boundary
layer;

U, characteristic velocity;

u, velocity component in x-direction;

v, velocity component in y-direction;

X, distance along the surface from the
stagnation point or the leading edge;

¥, distance normal to x.

Greek symbols

B. wedge variable, equation (12);

0, density ;

v, stream function, equation (6);

g, transformed x-coordinate, equation (7a);
7, transformed y-coordinate, equation (7b);
7.,  shear stress;

T wall shear stress.

W

1. INTRODUCTION

THE NeeD for studying boundary layer transfer of
non-Newtonian fluid was realized about two decades

*Now at NASA Kennedy Space Center, Mail Code DD-
MED-42, FL 32899, US.A.

ago. This was probably caused by the growing use of
non-Newtonian fluids such as molten plastics, poly-
mers, foods, etc., in various manufacturing and
processing industries. In most technological appli-
cations, it is often the wall shear and the surface heat
transfer rate that are of the greatest interest. Since
the validity of boundary layer energy equation is not
restricted to any particular class of fluid, the heat
transfer formula of Lighthill [1] or of Chao [2] can
also be used for flow of non-Newtonian fluid.
Because of large Prandtl number for most non-
Newtonian fluids, the Lighthill formula is generally
accurate enough for most engineering applications.
However, the Chao’s formula can be used if more
accurate results are desired. Since both formulas
require that the wall shear be known, the need for a
simple yet general procedure for calculating the wall
shear is obviously called for in the heat transfer
calculation.

To  provide such a  procedure, the
Karman—Pohlhausen integral method originally de-
vised for Newtonian fluid was used by Acrivos et al.
[3] and by Bizzell and Slattery [4]. Acrivos et al.
found that the method is substantially less accurate
for power-law fluids than for Newtonian substances
under otherwise same flow conditions. For this
reason, they presented [5] another approximate
solution by an asymptotic technique. Their solution,
in essence, is an interpolation between two limiting
solutions. This solution is simple to use, yet it is not
clear how the calculations are to be improved if
more accurate results are desired. The Blasius series
method for analyzing the boundary layer equation of
Newtonian fluid was extended to the power-law
fluids by Wolf and Szewczyk [6]. They pointed out
that very little can be expected from the series for n
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greater than about 1.2 for the entire region of
laminar flow. The Goertler series method for solving
the boundary layer momentum equation was ex-
tended to power-law non-Newtonian fluid by Serth
and Kiser [7]. With the universal functions they
provided, the analysis appears to be of limited use-
fulness for pseudo-plastic fluids (n < 1).

A rapid computational procedure which makes
use of universal function for calculating boundary
layer transfer in flow of Newtonian fluid was first
proposed by Merk [8] and later corrected by Chao
and Fagbenle [9]. This series solution method is able
to provide accurate results for flows of Newtonian
fluids even if only the first term of the series is used
[10,11]. The first term of the series represents the
local similarity solution. The remaining provides a
rigorous correction for the departure from local
similarity. In this paper we shall extend the
Merk—Chao method to the solution of the laminar
boundary-layer momentum equation of non-
Newtonian fluid. The flow is assumed to be steady
and incompressible.

2. ANALYSIS
For a steady, incompressible, laminar flow past a
smooth axisymmetric object, the boundary-layer
equations are [12]

Nru) | 8(rv) _
o Tay 0 @
ou au dU 1 0y,

For flow past a two-dimensional body, one needs
only to set r = L, L being a reference length. For the
so-called power-law fluids, one has:

ou\"
Txy = K(b}) s (3)

in which K and n are material constants of the fluid

and are both positive. The appropriate boundary
conditions are:

u(x,0)=v(x,0)=0 (4a,b)

u(x, oc) = U(x). (5)

Upon introducing a stream function (x,y) de-
fined by

6a,b
Oy T ox’ (62.0)

the continuity equation (1) is then identically
satisfied. By considering the transformation

2 "X Nnt1 U 2n-1
: J‘fﬁL(%) (o) e o

é 1/(n+1)1)j (7b)

Rl/(n+1)
y lﬂ LU,

and introducing a dimensionless stream function
f (&, 1) such that

Y(x,y) = LU RZMTDEVCTD (& ), (8)
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the momentum equation (2) becomes:

ﬂ 2 52f 2-n 2f 1—n 5f 2
%3+Mn+01<57) vy (%,) [1_<M>]
K(yfl TQL@L S

n? ) an okom ¢ on? ]

The associated boundary conditions are:

a

f€,0)=0, o (£0)=0 (10a,b)
)
al(QOO)=1- (11)
Ul

Here R, = pL"U% "/K is the generalized Reynolds
number and

dU
E——
g = L dx 12
_Uw<r n+1<U‘2n ( )
i) (@)
is the so-called “wedge variable”. The x-component

of velocity and the wall shear are, respectively, given
by

0
u=v?, (13)
on
and
KU" \n U 2n
Rn/(n + 1)( <_
T L)Uw

Xé n/(n+l)[ f(é 0)} (14)

According to Merk and Chao, the appropriate
series solutions for equation (9) satisfying equations
(10a,b) and (11) is:

a8

f(és '7) = fo(ﬂ’ ”])‘f‘f &fl(ﬁs ?’])

dZ
S SRR RS
Upon substituting equation (15) into equation (9),
followed by first collecting terms free of derivatives
of B and then terms common to ¢&(df/dé),
E2(d2B/dE?), etc., one obtains a sequence of differen-
tial equations. The first equation is, with prime
denoting differentiation with respect to #,

//r nN2—n
(n+1) So(fe)

+- [1"(fo)2]( ) =0, (16)

with
(17a,b)
(18)

Jo(B, 0) = 1.
It should be noted that j is a function of x only. At a

given streamwise location, it is fixed. Hence, equa-
tion (16) can be integrated as if it were an ordinary
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differential equation. The f, function is universal in
the sense that for a given f and », it may be
evaluated once and for all.

The second and third equations are

v [ 22—n) B Py
+[(+I)fo(f SRS - B
i—n

ﬁ(fé')‘"(fé)z} i

n+22

2
—~ B+ ) iAo (e~ "

— E rf eyl n % — 2-n (}ﬁ)
—n[fo(fo) 38 (£ 0,6’] (19)
and
22— —
.sw[ S AU+ B
‘*—“ﬂ(f "(fo) ] ~*(ﬂ**-Z)
o T Y ) (e
o\Jo 2 ( + 1) J2
[fo N T =Y (20)
with
S8, 0 = F(.0) = f/(B, 0) =0, (2labgc)
where i = | or 2. Like fp, s are also universal. The
derivative 8%f/dn? evaluated at the wall is:
O &0 = 6,0 FHEL .0
a 2
2
+52d£§ B0 ... (22)

It is fitting to point out that when f is a constant,
the flow is similar and the series expansion (15) has
only the first term. The expression for wall shear now
becomes:

n ” 20
: = KUcn R,./(n*l)(r_ (i
» T e L)\u,

x &M NL LB, 00" (23)
When the flow is nonsimilar, the first term, f, in (15)
constitutes the local similarity solution. The remain-
ing terms, taken collectively, may be regarded as
corrections for the deviation from local similarity.
Hence equation (23) also represents the local similar
solution of a nonsimilar problem. We reiterate that if
one sets r = L, all equations presented in this paper
are then applicable to two-dimensional flows.

Once the wall shear function is calculated, the
formula for surface heat transfer rate calculation is
readily available. The readers are referred to
[1,2,13].
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3. APPLICATIONS
We now consider a flow of power-law fluid past a
wedge for which U(x) is proportional to x™. It can
then be demonstrated that:

B =2m/{[m(2n—1)+1], aconstant {(24a)
2 x U
.U i K VT
T m2n—1+1 L(Ux) (24)
and
o= KU gy L)
w I 2 _Uym
Erme L 4B, 0] (24¢)

Since f is a constant, the flow is similar. This agrees
with the work of Hsu and Cothern [ 14]. Comparing
equation (24c) with eguation (12) in [14], one has:

7(8.0) = [ 2

Hin+ 1y i
m] 1O, (25)

where [ £,,(0)]u.c denotes the wall derivative £,,(0)
in [14].

By Mecksyn's method, Hsu and Cothern [14] have
calculated values of [f,(0)]uc for wedge angle
from 0 to 7 and n from 0.2 to 2. Using their values of
[ £ (0)]u-c and equation (25), the value of universal
function, f;'(8,0), can be obtained. They are tabu-
lated in Tables 1 and 2. With these, the wall shear
can be calculated from (23).

We next consider flow across a long horizontal
circular cylinder. According to Shah er al. [15], the
velocity profile for x/R < 1.05and for 0.6 < n < 1is:

, .3
Y 0 —0.131(i .
U R R

@€

(26)

Using this expression, Serth and Kiser [7] have
reported numerical data of the dimensionless wall
velocity gradient for several values of n. To effect a
direct comparison, we shall also use equation (26)
and assume that it is valid for-all n and for the entire
flow region. With the velocity profile specified, ¢ and
B can be evaluated from (7a) and (12). With the aid
of Table 1 or 2, the dimensionless wall velocity
gradient can then be calculated from equation (23).
The results are, along with the data reported in [ 7],
displayed in Fig. 1. It is seen that they compared
quite well except for n = 0.2. This may be due to the
fact that Serth and Kiser [7] had difficulty in
obtaining sufficient universal functions for values of
n < 0.5. Also shown in Fig. | are the results for n
=04 and 1.6 calculated from the 2-term Blasius
series in [6] and with the velocity profile represented
by equation (26). Good agreement is seen for x/R up
to about 1. Since the third term in the Blasius series
is posiiive for n > 1 and negative for n < 1, better
agreement is expected if the results from 3-term
Blasius series were compared. It is interesting to
point out that, unlike the case of Newtonian fluids,
the first term of the Blasius series is monotonically
increasing with x.
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Table 1. Value of f3'(8, 0) for pseudoplastic fluids

n = 0.200 n = 0.300 n = 0.400 n = 0.500
B S8, 9) B f(B,0) B Jo'(B. 0) B 0 (8,0)
0.000 0.895 0.000 0.675 0.000 0.578 0.000 0.529
0.109 1.457 0.108 1.034 0.106 0.842 0.105 0.738
0.238 1.844 0.233 1.280 0.227 1.030 0.222 0.894
0.395 2236 0.380 1.663 0.366 1.234 0.353 1.058
0.588 2.762 0.556 1.892 0.526 1.502 0.500 1.261
0.833 3.418 0.769 2.258 0.714 1.733 0.667 1.436
1.154 4132 1.034 2.669 0.937 2.001 0.857 1.631
1.591 5.127 1.373 3.179 1.207 2.316 1.077 1.846
2222 6.561 1.818 3.837 1.538 2.689 1.333 2.094
3214 8.767 2432 4.716 1.957 3.143 1.636 2.356
5.000 12.607 3.333 5.947 2.500 3.704 2.000 2.667
n = 0.600 n = 0.700 n = 0.800 n = 0.900
B Jo'(B.0) B Jo'(8,0) 8 Jo'(B,0) B Jo'(B.0)
0.000 0.500 0.000 0.485 0.000 0475 0.000 0471
0.104 0.676 0.103 0.638 0.102 0.613 0.101 0.595
0.217 0.813 0.213 0.761 0.208 0.727 0.204 0.703
0.341 0.951 0.330 0.882 0.319 0.834 0.309 0.801
0476 1.112 0.455 1.012 0.435 0.943 0417 0.889
0.625 1.253 0.588 1.128 0.556 1.051 0.526 0976
0.789 1.400 0.732 1.246 0.682 1.138 0.638 1.058
0.972 1.557 0.886 1.365 0814 1.233 0.753 1.133
1.176 1.734 1.053 1.490 0.952 1.327 0.870 1.212
1.406 1.903 1.233 1.616 1.098 1.423 0.989 1.287
1.667 2.085 1.429 1.749 1.250 1.518 1.111 1.357
Table 2. Value of fy'(, 0) for dilatant fluids
n = 1.000 n= 1200 n= 1400 n = 1.600
B 15'(8.0) B fo' (8,0 B fo'(B,0) B Jo'(B,0)
0.000 0.469 0.000 0.472 0.000 0.476 0.000 0.488
0.100 0.588 0.098 0.580 0.096 0.574 0.094 0.587
0.200 0.687 0.192 0.669 0.185 0.654 0.179 0.659
0.300 0.775 0.283 0.742 0.268 0.704 0.254 0.714
0.400 0.856 0.370 0.807 0.345 0.754 0.323 0.756
0.500 0.930 0.455 0.864 0417 0.819 0.385 0.795
0.600 0.997 0.536 0916 0.484 0.864 0.441 0.828
0.700 1.063 0.614 0.963 0.547 0.898 0.493 0.857
0.800 1.124 0.690 1.006 0.606 0.93t 0.541 0.881
0.900 1.184 0.763 1.047 0.662 0.961 0.584 0.905
1.000 1.233 0.833 1.079 0.714 0.987 0.625 0.925
We finally present the wall shear function for flow
n = 1.800 n = 2000 past a sphere for which
B f5'(8,0) B o (8,0) r/R = sin(x/R). 7
0.000 0.490 0.000 0.498 If we assume that the external velocity distribution is
0.093 0.592 0.091 0.605 independent of the degree of deviation of the fluid
0.172 0.658 0.167 0.652 f N . behavi h di to
0242 0.707 0231 0.700 rom Newtonian behavior, we have, according
0.303 0.744 0.286 0.736 potential theory,
0.357 0.777 0.333 0.765 U
0.405 0.805 0375 0.789 —— = 3sin(x/R). (28)
0.449 0.828 0412 0.808 Ug
8‘5‘22 8222 83‘7‘3 82%; Thus, the wall shear can be calculated from equation
0.556 0.882 0.500 0.851 (23). They are displayed in Fig. 2 and are self-

explanatory.
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4. CONCLUDING REMARKS

The Merk—Chao series solution method has been
extended to the solution of boundary-layer momen-
tum equation of power-law non-Newtonian fluid.
Equation (23) together with Tables | and 2 provide a
simple yet general routine procedure for determining
the wall shear over two-dimensional and axisym-
metric bodies of arbitrary contour. With the wall
shear function calculated, the local surface heat
transfer rate can be evaluated from [1] or [2]. In
addition, the thermal response behavior of boundary
layer flow of the power-law fluid can also be
investigated [16].
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ECOULEMENT AVEC COUCHE LIMITE LAMINAIRE D’UN FLUIDE NON-NEWTONIEN

Résumé—On présente une solution de I'equation de la couche limite laminaire bidimensionnelle et
axisymétrique pour un fluide non-newtonien 4 loi puissance. L’analyse utilise la méthode de Merk—-Chao
imaginée pour les fluides newtoniens. Les fonctions universelles pour le terme principal de la série sont
tabulées pour n compris entre 0,2 et 2. On donne les équations reliant les fonctions universelles aux
second et troisiéme termes. La solution avec soit la formule de Lighthill soit la formule de Chao, constitue
une procédure simple et générale pour le calcul de la tension et du flux thermique pariétaux. La théorie
est appliquée aux écoulements autour du cylindre circulaire et de la sphere et les résultats sont comparés
aux données publiees.

LAMINARE GRENZSCHICHTSTROMUNG EINER NICHT-NEWTONSCHEN FLUSSIGKEIT

Zusammenfassung — Eine  Losung  fur  die

zweidimensionale und

axialsymmetrische laminare

Grenzschicht-Impulsgleichung einer dem Potenzgesetz gehorchenden nicht-newtonschen Fliissigkeit wird
beschrieben. Bei der Analyse werden die Merk—Chao-Reihen verwendet, die urspriinglich fiir die
Stromung einer newtonschen Fliissigkeit abgeleitet wurden. Die allgemeinen Funktionen fiir das erste
Glied der Reihen werden fiir n von 0,2 bis 2 tabellarisch angegeben. Gleichungen, die die allgemeinen
Funktionen fur das zweite und dritte Glied bestimmen, werden angegeben. Die Losung, entweder mit der
Formel von Lighthill oder der von Chao zusammen, bildet eine einfache, aber allgemeine Methode fiir die
Berechnung der Wandschubspannung und des Wirmeiibergangs an der Oberfliche. Die Theorie wurde
fir die Stréomung um einen Kreiszylinder und eine Kugel angewendet und die Ergebnisse mit bekannten
Daten verglichen.
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TEYEHUWE HEHBIOTOHOBCKOW XUIAKOCTH B JJAMUHAPHOM
MOrPAHUYHOM CJIOE

AHHOTaLNA — l‘lpezxcranneﬂo PCLUCHHC YPABHCHHA KOJIHMECTBA [BHXCHHMA I ABYXMEPHOIO H OCe-

CHMMETPHYHOI'C JTAMHHAPHOIO NMOTrpaHHYHOro CJOA HEHBLIOTOHOBCKOH XMOKOCTH CTEMEHHOrO THNA.

TEYEHHs HBIOTOHOBCKOH uakocTh. [lpeacrasieHa tabnHua yrmBepcaibHbIX (QYHKUIHH B Auana3oHe

0,2 <n <2 nns nepporo wunena pasyiokenns. [IpHBeAeHL! YPABHEHHA. ONpPEACAAIOLIHE YHHBEPCAJIb-

Hbie (QYHKUMH, CBH3aHHBIE CO BTOPbIM M TPETHHM uIeHamH pasnoxenus. [lpeanoxenHoe peiuenue

sMmecte ¢ Qopmynoft Jladitxunna win dopmyno#t Yao mpeacrasnser coboit npocToit H AocTatouHo

ofmuit MeTon pacdeTa HAnpAKEHHS TPEHHR HA CTEHKE M HHTEHCHBHOCTH TerutoobMmeHa Ha obTexa-

emofi nosepxHOCTH. MeTon npoBepes Ha npuMepe obTexanus kpyrnoro umamsapa u cdepsi. [po-
BEJACHO CPABHEHME NONYYEHHBIX PE3YILTATOB C ONYOIHKOBAHHBIMH JAHHLIMH.
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